Scientific Advisor
Prof. dr. A.V. Panfilov
&w=400&h=400)
Even voorstellen
I am a guest professor in cardiac biophysics and a leading expert in the development and use of mathematical models for cardiac arrhythmia research.
I am is also a full professor of biophysics at the Department of Physics and Astronomy of Ghent University (Belgium), and a Honorary professor of mathematics at Dundee University (UK). He research interest mainly focuses on theoretical studies of wave propagation in excitable media, which has resulted in an extensive track record of grants, publications and lectures regarding this subject.
In early 2017, Sasha has been appointed as a guest professor to further consolidate our collaboration, especially with regard to development and use of mathematical models for cardiac arrhythmia research, including the ERC-supported Bio-ICD project.
I am is also a full professor of biophysics at the Department of Physics and Astronomy of Ghent University (Belgium), and a Honorary professor of mathematics at Dundee University (UK). He research interest mainly focuses on theoretical studies of wave propagation in excitable media, which has resulted in an extensive track record of grants, publications and lectures regarding this subject.
In early 2017, Sasha has been appointed as a guest professor to further consolidate our collaboration, especially with regard to development and use of mathematical models for cardiac arrhythmia research, including the ERC-supported Bio-ICD project.
Wetenschappelijk onderzoek
My main results in the field of electrical wave propagation include I) the findings of dynamical properties of 3D spiral waves (filament tension, filament twist etc), II) one of the first studies of the phenomenon of spiral break-up, which is now considered as one of the major mechanisms of ventricular fibrillation, III) studies of effects of anisotropy and heterogeneity of myocardium on the onset of cardiac arrhythmias, IV) development of the first anatomically based electrophysiological models of dog and of human heart, which we apply for detailed studies of mechanisms of cardiac arrhythmias and development of new effective methods of fighting against sudden cardiac death.